NON-METABELIAN SOLUBLE GROUPS INVOLVING THE LUCAS NUMBERS

H. Doostie

Mathematics Department, Teacher Training University, 49 Mofateh Ave. Tehran, 15, Islamic Republic of Iran

Abstract

In this paper we investigate the class G(n,k) of groups of small deficiencies. This class is of interest for several reasons. It is relevant to the study of 2-generator 2-relator groups, and it adds to the relatively few examples of the soluble groups of derived length 3. Also, the order of G(n,k), when it is finite, is equal to $n(1+\alpha)(g_n-1-(-1)^n)$ where $\alpha=h.c.f.(n,3)$ and g_n denotes the Lucas numbers defined by $g_0=2,g_1=1,g_{n+2}=g_n+g_{n+1}$, $(n\geq 2)$.

Introduction

The family of infinite classes of finitely presented finite groups which are soluble of derived length 3 is small, for examples see [2,3,5 and 6]. The purpose of this paper is to examine the groups

 $G(n,k)=\langle a,b| a^2=b^n=1$, $ab^kab^{-1}ab^2ab^{-k}ab^{-2}ab=1\rangle$, and the related deficiency zero groups

G(n)= $\langle a,b | a^2=b^n, a^iba^jb^{-1}a^kb^2a^{\ell}b^{-1}a^mb^{-2}a^tb=1 \rangle$, where i,j,k, ℓ' ,m,t ϵ { ± 1 }, to show that, among these groups there are certain infinite subclasses of nonmetabelian finite soluble groups. The presentations of these groups arise from the investigation of (2,n)-groups $\langle a,b | a^2=b^n=1, w (a,b)=1 \rangle$ which were studied in [4] and [5] in all the cases when $w(a,b)=ab^hab^iab^jab^kh,i,j,k$ ϵ { ± 1 , ± 2 }.

The Reidemeister-Schreier algorithm in the form given in [1] will be used to find the presentations of subgroups. The notation used here are standard and are consistent with that of [5]. The notation (m,n) will be used for the highest common factor of the integers m and n; [a,b] for the commutator a⁻¹ b⁻¹ ab; and G' denotes the derived group of the group G.

If G is 2 finite group with presentation G=F/R (F is a free group of finite rank) then Schur multiplier M (G)

Keywords: Combinatorial group theory, presentation of groups, Fibonacci sequences

of G is the subgroup $(F \cap R) / [F,R]$, where [F,R] is the group generated by all commutators $x^{-1} y^{-1} xy$, $x \in F$, $y \in R$.

A group S is a Schur extension of a group G if there exists a subgroup $A \le S$ such that $S/A \cong G$ and $A \le S' \cap Z(S)$ (Z(S) is the centre of S).

A covering group C of a group G is a group which contains a subgroup A which satisfies the conditions $C/A \cong G$ and $A \leq C' \cap Z(C)$.

2. The groups G(n,k)

Define the Lucas numbers $g_0=2$, $g_1=1$ $g_{n+2}=g_n+g_{n+1}$, $(n\geq 2)$, which are related to the Fibonacci numbers $f_0=f_1=1$, $f_{n+2}=f_n+f_{n+1}$, $(n\geq 2)$, via the relation $g_n=f_{n-1}+f_{n+1}$. Our result in this section is:

Theorem 2.1.

- (i) For every integer $n\ge 1$, G(n,1) is a finite soluble group of order $n(1+\alpha)(g_n-1-(-1)^n)$, where $\alpha=(n,3)$;
- (ii) If (n,3) = 1, G(n,1) is soluble of derived length 3, and is metabelian, otherwise;
- (iii) $G(n,k) \cong G(n,1)$ if (n,k) = 1, otherwise G(n,k) is infinite. We prove this theorem in some stages, and the

following lemma is of some help in the proof.

Lemma 2.2.

(i) If (n,6) = 3, then $(f_{n-1}, -1 + f_{n-2}) = 2$; and for every

$$n \ge 0 \sum_{k=0}^{n} f_k = -1 + f_{n+2};$$

(ii) If (n,6)=6 then, $\sum_{k=1}^{-1+n/6} f_{n-1-6k} = (-2+f_{n-4})/4$, and

$$\sum_{k=1}^{-1+n/6} f_{n-6k} = (-3+f_{n-3)/4};$$
(iii) If $(n,6) =$

$$\sum_{k=1}^{(n-3)/6} f_{n-1-6k} = (1/4)f_{n-4}, \text{ and } \sum_{k=1}^{(n-3)/6} f_{n-6k} = (-1+f_{n-3})/4;$$

(iv)
$$f_{n-1} \cdot f_{n+1} - f_n^2 = (-1)^{n-1}$$
, and $g_n = f_n + f_{n-2}(n > 1)$.

Proof. We prove (i). The other identities may be proved in a similar way. Let n=6m+3. Then, for every integer $k \ge 0$ we have

$$\begin{split} &(f_{n-1},-1+f_{n-2}) = (f_{6m+2},-1+f_{6m+1}) \\ &= \left((-1)^k f_{k+1} + f_{6m-k}, (-1)^{k+1} f_k + f_{6m+1-k} \right). \\ &\text{Let } a_k = \left((-1)^k \left(f_{k+1} + f_{6m-k}, \left(-1 \right)^{k+1} f_k + f_{6m+1-k} \right) \text{ and } \\ &b = \left(f_{6m+2},-1+f_{6m+1} \right). \text{Then} \\ &a_0 = \left(f_1 + f_{6m},-f_0 + f_{6m+1} \right) \\ &= \left(1 + f_{6m},-1+f_{6m+1} \right) \\ &= \left(1 + f_{6m}-1+f_{6m+1},-1+f_{6m+1} \right) \\ &= \left(f_{6m} + f_{6m+1},-1+f_{6m+1} \right) \\ &= \left(f_{6m+2},-1+f_{6m+1} \right) = b, \end{split}$$

Now, let $a_k = b$, we have

$$\begin{split} &a_{k+1} \!=\! ((-1)^{k+1} \ f_{k+2} \ +\! f_{6m-k-1}, \, (-1)^{k+2} \ f_{k+1} \ +\! f_{6m-k}) \\ &=\! ((-1)^{k+2} \ f_{k+1} \ +\! f_{6m-k}, \, (-1)^{k+1} \ f_{k+2} \ +\! f_{6m-k-1}) \\ &=\! ((-1)^k \ f_{k+1} \ +\! f_{6m-k}, \, (-1)^{k+1} \ f_{k+2} \ +\! f_{6m-k-1} \ +\! (-1)^k \ f_{k+1} \ +\! f_{6m-k}) \\ &=\! ((-1)^k \ f_{k+1} \ +\! f_{6m-k}, \, (-1)^{k+1} \ (f_{k+2} \ -\! f_{k+1}) + (f_{6m-k-1} \ +\! f_{6m-k})) \\ &=\! ((-1)^k \ f_{k+1} \ +\! f_{6m-k}, \, (-1)^{k+1} \ f_k \! +\! f_{6m-k+1}) \\ &=\! a_k \! =\! b. \end{split}$$

Note that we have used the properties (x,y)=(y,x) and (x,y)=(x,y+x). Let k=3m then,

$$(f_{n-1}, -1+f_{n-2})=(f_{3m+1}+f_{3m}, -f_{3m}+f_{3m+1})$$
 (m odd or even)

=
$$(f_{3m+2}, f_{3m-1})$$

= $(2f_{3m}+f_{3m-1}, f_{3m-1})$

=
$$(2f_{3m}, f_{3m-1})$$
 (for, $(f_{3m}, f_{3m-1})=1$)
= $(2,f_{3m-1})=2$ (for, f_{3m-1} is even).

Note that f_i is even if and only if i=2 or $-1 \pmod{6}$. The last part of (i) can be proved by induction.

First we consider G(n,1) and show that it is finite for every n. The subgroup $H=\langle b, aba \rangle$ of G(n,1) has index 2 in G(n,1), for, using coset enumeration and defining two cosets 1=H and 1a=2 shows that 2b=2 and 1b=1. We shall adopt the standard practice of using i to denote both a coset and a representative of that coset throughout the paper when we use the Reidemeister-Schreier algorithm. Let x=a and y=aba, thus, from the subgroup generators we obtain the relations $1 \cdot b=x.1$ and $2 \cdot b=y.2$ between coset representatives. Now, the relations $a^2=i$, $a^2=i$,

H=<x,y | $x^n=y^n=1,y^{-1}x^2y=xy^{-1}x^2$, $x^{-1}y^2x=yx^{-1}y^2$. Let W=H'. W can be generated by $\{\omega_i: i=1,...,n\}$ where $\omega_i=x^iy^{-1}x^{-i+1}$, for the abelianized group H/H' shows that $y^{-1}x\in H'$, |H/H'|=n and by defining n cosets $1=<\omega_1,...,\omega_n>=n$. We now use the above mentioned method to get a presentation for W, and we'll get $W=<\omega_1,...,\omega_n|\omega_i\omega_{i+1}=\omega_{i+1},|\omega_i^2,\omega_{i+1}|=1,\omega_n\omega_{n+1}...\omega_2\omega_1=1,(i=1,...,n)>$, where indices are reduced modulo n. Now, we have:

Lemma 2.3. For every $n \ge 1$, $|W/W'| = g_n - 1 - (-1)^n$.

Proof. The abelianized relations of W give us that: $w_n = w_1 w_2$, $w_{n-1} = w_1^2 w_2$, $w_{n-2} = w_1^3 w_2^2$,...

And in general $w_{n-i}=w_1^{f_{i+1}}$. $w_2^{f_i}$, i=0,1,...,n-3. (This can be proved by induction on i). Substitute for $w_i(i\geq 3)$ in the relations w_2 $w_3=w_1$, w_3 $w_4=w_2$ and $w_nw_{n-1}...w_2w_1=1$, thus, we will get $W/W'=< w_1$, w_2 $|r_1=r_2=r_3=[w_1, w_2]=1>$ where

$$r_1 = w_1^{-1 + f_{n-2}} w_2^{1+f_{n-3}}, r_2 = w_1^{f_{n-1}}. w_2^{-1+f_{n-2}} a n d$$

$$r_3 = w_1^{n-2}$$
 $r_3 = w_1^{n-3}$
 $r_3 = w_1^{n-3}$

redundant, for,
$$r_3 = w_1^{-1+f_n} \cdot w_2^{f_{n-1}}$$
 (by 2.2-(i))

$$= w_1^{1+f_{n_1}+f_{n_2}} \cdot w_2^{(-1+f_{n_2})+(1+f_{n_3})}$$

$$= r_1 r_2 = 1 \quad (for, [w_1, w_2] = 1).$$
So, $|W/W'| = detM$ where

$$M = \begin{bmatrix} -1+f_{n2} & 1+f_{n3} \\ f_{n1} & -1+f_{n2} \end{bmatrix}.$$
Then, $|W/W'| = |f_{n-2}^2 - f_{n-1} f_{n-3} + 1 - 2f_{n-2} - f_{n-1}|$

$$= (-1)^{n-1} - 1 + f_{n-2} + (f_{n-2} + f_{n-1})$$

=
$$(-1)^{n-1}$$
 - 1 + $(f_{n-2} + f_n)$ = $(-1)^{n-1}$ - 1 + g_n

(For, f_{m-1} f_{m+1} - $f_m^2 = (-1)^{m-1}$ and $g_n = f_n + f_{n-2}$, $n \ge 2$). This completes the proof. \square

Lemma 2.4. G(n,1) is finite; and if (n,3)=1 then $|G(n,1)| = 2n (g_n-1-(-1)^n)$.

Proof. We showed that | G/H|, | H/W| and | W/W'| are finite, so it is sufficient to show that W' is finite.

Consider the central subgroup $K=\langle w_1^2,...,w_n^2 \rangle$ of W. Then, a coset enumeration shows that

$$|W:K| = \begin{cases} 1 & \text{,if } (n,3)=1 \\ 4 & \text{,if } (n,3)=3. \end{cases}$$

(We may define four cosets as 1=K, $1w_1=2$, $1w_2=3$ and $3w_1=4$). This proves that Z(W) (the centre of W) is of finite index in W. The result now follows from the well-known theorem due to Schur (see 2.2. of [7], for example).

To complete the proof, let (n,3)=1. Then, |W/K|=1, i.e., W is an abelian group. So, $|W|=g_n-1-(-1)^n$ follows from 2.3., and then the result is immediate.

Now, let us consider the case (n,3)=3. Simplifying the presentation of W is substantial, and the following lemma is a key result for this simplification.

Lemma 2.5. In W, for every $k \ge 3$, w_k can be expressed in terms of w_1 and w_2 as follows:

(i)
$$w_k = w_2^{-f_{k2}} \cdot w_1^{f_{k3}}$$
, if k=3 or 1(mod6)

(ii)
$$w_k = w_1^{-f_{k,3}}$$
. $w_2^{f_{k,2}}$, if $k \equiv \pm 2$ or $0 \pmod{6}$

(iii)
$$w_k = w_1^{f_{k4}}, w_2^{f_{k5}}, w_1^{f_{k5}}, \text{if } k \equiv -1 \pmod{6}$$

Proof. By induction on k and using the Lemma 2.2 \square

The following two lemmas now give us the order of W.

Lemma 2.6. Let (n,6)=6. Then, W can be presented as

$$\begin{aligned} & \text{W=<} \mathbf{w}_{1}, \mathbf{w}_{2} | \mathbf{r}_{1} = \mathbf{r}_{2} = 1, \\ & (\mathbf{w}_{1} \mathbf{w}_{2})_{1}^{2} (\mathbf{w}_{2} \mathbf{w}_{1})^{-2} = 1, \\ & \left[\mathbf{w}_{1}^{2}, \mathbf{w}_{2} \right] = \left[\mathbf{w}_{2}^{2}, \mathbf{w}_{1} \right] = 1 > \\ & \mathbf{r}_{1} = \mathbf{w}_{1}^{1 + \mathbf{f}_{n,3}} \cdot \mathbf{w}_{2}^{1 - \mathbf{f}_{n,2}} \text{ and } \mathbf{r}_{2} = \mathbf{w}_{1}^{1 - \mathbf{f}_{n,2}} \cdot \mathbf{w}_{2}^{\mathbf{f}_{n,1}}. \end{aligned}$$

where, $r_1 = w_1^{1+f_{n-2}}$. $w_2^{1-f_{n-2}}$ and $r_2 = w_1^{1-f_{n-2}}$. $w_2^{f_{n-1}}$. Moreover, $|W| = 2(g_{n-2})$.

Proof. Observe that the relations $\left[w_i^2, w_{i+1}\right] = 1$, (i>3) all are redundant, for, suppose (i,6)=3 (the proofs are similar in the other cases), then by the above lemma we conclude that

$$\begin{split} \left[\, w_{\,i}^{\,2}, \, \, w_{\,i+1}^{\,-f_{\,i\,2}} \, = \, \left[\, w_{\,1}^{\,-f_{\,i\,2}} \, , \, \, w_{\,2}^{\,-f_{\,i\,3}} \, , \, \, w_{\,1}^{\,-f_{\,i\,2}} \, , \, \, w_{\,1}^{\,-f_{\,i\,2}} \, , \, \, w_{\,2}^{\,-f_{\,i\,2}} \, , \, \, w_{\,2}^{\,-f_{\,i\,2}} \, \right] \, \\ &= \, \left[\, w_{\,2}^{\,-f_{\,i\,3}} \, , \, \, w_{\,1}^{\,f_{\,i\,2}} \, \right] \, ^{\,2} \, , \, \, \left[\, w_{\,1}^{\,f_{\,i\,2}} \, , \, \, w_{\,2}^{\,-f_{\,i\,3}} \, \right] \, ^{-2} \end{split}$$

(this is true because $[w_1^2, w_3] = 1$ is equivalent to $[w_2^2 w_1] = 1$ and since f_{i-1} is even then, $w_2^{f_{i-1}}$ commutes with w_1 .)

On the other hand $[w_3^2, w_4] = 1$ is equivalent to the relation $(w_1 w_2)^2 = (w_2 w_1)^2$. Using this relation and the fact that f_{i-3} and f_{i-2} are both odd integers, give us the validity of the relation

$$\left[\left. w_{\,2}^{\,f_{\,_{i,3}}} \; w_{\,1}^{\,f_{\,_{i,2}}} \, \right]^{\,2} = \left[\left. w_{\,1}^{\,f_{\,_{i,2}}} \; w_{\,2}^{\,-f_{\,_{i,3}}} \, \right]^{\,2} \; .$$

So
$$\left[w_i^2, w_{i+1}\right] = 1$$
 for every i>3.

Substitute w_n and w_{n-1} in the two relations $w_1w_2=w_n$ and $w_nw_1=w_{n-1}$ to get the required results $r_1=r_2=1$. Obviously,

 $w_2w_3=1$, $w_3w_4=w_2$,..., and $w_{n-1}w_n=w_{n-2}$ yield the trivial or redundant relations.

To complete the proof we show that $w_n w_{n-1} \dots w_2 w_1 = 1$ is also redundant. Let $X_0 = w_n w_{n-1} w_{n-2} w_{n-3} w_{n-4} w_{n-5}$. Substitute for w_i in terms of w_1 and w_2 , then X_0 becomes

$$X_0 = w_1^{-f_{n-3} + 2f_{n-6} - f_{n-9}}$$
. $w_2^{f_{n-2} - 2f_{n-5} + f_{n-6}}$,

because, (n,6)=6 then f_{n-4} and f_{n-7} are even, and other powers of w_1 and w_2 in the experession of X_0 are odd numbers, hence the result follows from the relations $[w_1^2, w_2] = [w_2^2, w_1] = 1$.

The properties of Fibonacci numbers, now give us the following identities

$$-f_{n-3}+2f_{n-6}-f_{n-9}=-4f_{n-7}$$
, and $f_{n-2}-2f_{n-5}+f_{n-8}=4f_{n-6}$,
so $x_o=w_1^{-4f_{n-7}}$. $w_2^{4f_{n-6}}$, and $w_n w_{n-1} \dots w_2 w_1=1$ becomes w_1^A . $w_2^B=1$

where,
$$A=-4\sum_{k=0}^{-2+n/6}f_{n-6\,k-7}$$
 and

 $B=4(1+\sum_{k=0}^{-2+n/6}f_{n-6\,k-6})$. As a result of 2.2.-(ii),

 w_1^A . $w_2^B=1$ is equivalent to r_1 . $r_2=1$, and so is redundant.

To find the order of W, consider the subgroup $L=< w_1^2$, $w_2 >$ of W where we can easily see that |W:L|=4 and using the Reidemeister-Schrier algorithm gives us the following presentation

$$L = \langle x, y \mid [x, y] = 1,$$

$$x^{(1+f_{n_3})/2}. \ y^{1-f_{n_2}} = 1, \ x^{(1+f_{n_2})/2}. \ y^{f_{n_1}} = 1 >.$$

The order of this abelian group equals $(g_n-2)/2$ which may be found by the matrix method as well as Lemma 2.3. Then, $|W|=2(g_n-2).\square$

Lemma 2.7. Let (n,6)=3. Then W can be presented as follows:

$$\begin{aligned} & \text{W=<} \mathbf{w}_1, \, \mathbf{w}_2 \big| \, \mathbf{r}_3 = \mathbf{r}_4 = 1, \, (\mathbf{w}_1 \, \mathbf{w}_2)^2 (\mathbf{w}_2 \, \mathbf{w}_1)^{-2} = 1, \, [\mathbf{w}_1^2, \, \mathbf{w}_2] = [\mathbf{w}_2^2, \, \mathbf{w}_1] = 1 > \\ & \text{w here}, \qquad \mathbf{r}_3 = (\mathbf{w}_1 \mathbf{w}_2)^{-1} \, \mathbf{w}_2^{-f_{n-2}} \cdot \mathbf{w}_1^{f_{n-3}} \qquad \text{and} \\ & \mathbf{r}_4 = \mathbf{w}_1^{1+f_{n-2}} \cdot \mathbf{w}_2^{-f_{n-1}} \cdot \mathbf{Moreover} \, | \, \mathbf{W} | = 2\mathbf{g}_n. \end{aligned}$$

Proof. In an almost similar way to that of 2.6., using 2.2.- (ii), and considering the subgroup $I = \langle w_1^2, w_2 \rangle$ of W which is of index 2 in W in this case.

Proof of theorem 2.1. (i) comes from 2.3, 2.4, 2.6, and 2.7. To prove (ii) we see that

$$\begin{cases} |H''| = |W'| = 1, & \text{if } (n,3) = 1 \\ |H''| = |W'| = 2, & \text{if } (n,3) = 3. \end{cases}$$

(for, $|W/W'| = g_n - 1 - (-1)^n$). On the other hand H' is a subgroup of G', for, $yx^{-1} = ab^{-1}ab \in G'$, so $w_i \in G'$ for every i. Since

 $|G: H| = |G: H| \cdot |H: H'| = 2n = |G: G'|$

then, G'≅H'. Thus, the result follows immediately.

To prove (iii), if $d=(n,k)\neq 1$ we add the relation $b^d=1$ to those of G(n,k) and get the infinite free product $Z_2 * Z_d$ as a homomorphic image of G(n,k), so, G(n,k)

is infinite. Now, let d=(n,3)=1 and

R=abab⁻¹ ab² ab⁻¹ ab⁻² ab, S=ab^k ab⁻¹ ab² ab^{-k} ab⁻² ab. R=1 gives that aba=b⁻¹ ab² abab⁻² ab. Raising both sides to the power k and getting the relation S=1. Conversely, S=1 and bⁿ=1 yield R=1, because, there exist integers β and γ such that

So, S=1 yields $ab^{\gamma k}a=b^{-1}ab^2ab^{-\gamma k}ab^{-2}ab$. Hence, substituting for γk and considering $b^n=1$, gives the result R=1. This completes the proof.

3. Deficiency zero groups

Consider the

G(n)= $\langle a,b | a^2=b^n$, $a^i ba^j b^{-1} a^k b^2 a^\ell b^{-1} a^m b^{-2} a^t b=1 \rangle$ where, i,j,k,l,m, te {±1}. Let A=i+j+k+ ℓ +m+t. Obviously, if A=0 then G(n) is an infinite group (for, it is a group with positive deficiency). And if A=2 or 4 or 6 we'll get the following three non-isomorphic groups:

$$G_1$$
=a^2= b^n ,aba b^{-1} ab a^2 ab a^{-1} ab a^{-2} ab= a^{-1} ,
 G_2 =a^2= a^2 = a^2 a^2 = a

 G_3 =<a,b| a^2 = b^n , $abab^{-1}$ ab^2 ab^{-1} ab^{-2} ab=1> respectively. In this section, Our results concerning the finite groups involving Lucas numbers, are the following two theorems.

Theorem 3.1. G_1 is a finite soluble group.

Proof. The subgroup $\langle a^2 \rangle$ of G_1 is a central subgroup and a^2 belongs to G_1 (one may consider G_1/G_1). Also, $G/\langle a^2 \rangle \cong G(n,1)$. So, G_1 is a Schur extension of G(n,1). This means that G_1 is a homomorphic image of a covering group of G(n,1). Since G(n,1) is finite (Section 2), thus, G_1 is finite.

Theorem 3.2. For every $n=\pm 1 \pmod{6}$, G_3 is a finite group of order $6 \log_n$.

Proof. Consider the subgroup K=<b, $aba^{-1}>$ of G_3 .

Define two costs 1=K and la=2 to show that $|G_3:K|=2$. A similar method as in Section 2 may be used to find a presentation for K. Thus, we'll get

K=
$$\langle x,y| x^n = y^n$$
, $(yx^{-1}y^2x^{-1}y^{-2}x)x^{3n} = 1$, $(xy^{-1}x^2y^{-1}x^{-2}y)x^{3n} = 1 >$.

We show that the relation $x^{3n^2}=1$ holds in K. The second relation of K may be rewritten as

$$xyx^{-1} = x^{-3n} (y^2xy^{-2})$$
 (for, $< x^n >$ is central).

Raising both sides to the power n:

$$xy^nx^{-1} = x^{-3n^2}(y^2x^ny^{-2}).$$

So, $x^{3n^2}=1$ (Considering the relation $x^n=y^n$).

Now, we prove that x^n has period 3. Suppose, m is the least positive integer such that $x^{mn}=1$ holds in K and consider

$$K/K' = \langle x, y | x^n = y^n, yx^{3n-1} = 1, x = y^{-3n+1}, [x, y] = 1 \rangle$$

= $\langle x | x^{3n^2} = 1, x^{6n} = 1 \rangle$

which is isomorphic to \mathbb{Z}_{3n} or \mathbb{Z}_{6n} if n is odd, or if n is even, respectively. Let $n = 6q\pm 1$. If (m,3)=1 we have $K/K' \cong \mathbb{Z}_n$ which is a contradiction, then, (m,3)=3. Let m=3q', say. Since $(m,n)=(3q',6q\pm 1)=1$ and m divides 3n, hence, m divides 3, i.e. m=3. Thus, $< x^n >$ has order 3. We add the relation $x^n=1$ to those of K and get the group

 $\langle x,y \mid x^n = y^n = 1, yx^{-1}y^2x^{-1}y^{-2}x = 1, xy^{-1}x^2y^{-1}x^{-2}y = 1 \rangle$ which is a factor group of K by a central subgroup of order 3. However, this group considered to have order $2ng_n$ (Section 2), consequently, $|G_3| = 6ng_n$.

References

- M.J. Beetham and C.M. Campbell, "A note on the Todd-Coxeter coset enumeration algorithm" Proc. Edinburgh Math. Soc., 20, 73-79 (1976).
- C.M. Campell and E.F. Robertson, "Deficiency zero groups involving Fibonacci and Lucas numbers" Proc. of the Royal Soc. of Edinburgh, 81A, 273-286 (1978).
- C.M. Campbell, E.F. Robertson and R.M. Thomas, "Finite groups of deficiency zero involving the Lucas numbers" Proc. Edinburgh Math. Soc., 33, 1-10 (1990).
- 4. C.M. Campbell and R.M. Thomas, "On (2,n) -groups related to Fibonacci groups", Israel J.Math., 58, 370-380 (1987).
- H.Doostie, "Ph.D. Thesis: "Fibonacci-type sequences and classes of groups "St. Andrews University Scotland (1988).
- D.L. Johnson and E.F. Robertson, "Finite groups of deficiency zero" Homological group theory (London Math. Soc. Lecture Notes 36, Cambridge University Press 1979), 275-289.
- 7. J. Wiegold, "The Schur Multiplier" Groups St. Andrews (1981).