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NON-METABELIAN SOLUBLE GROUPS
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Abstract
In this paper we investigate the class G(n,k) of groups of small deficiencies. This
class is of interest for several reasons. It is relevant to the study of 2-generator 2-
relator groups, and it adds to the relatively few examples of the soluble groups of
derived length 3. Also, the order of G(n,k), when it is finite, is equal to

n(l+a) (g _-1-(-1)") where o=h.c.f.(n,3) and g, denotes the Lucas numbers

defined by g =2,g,=1,g ,,=g +8,.,, (n22).

Introduction

The family of infinite classes of finitely presented
finite groups which are soluble of derived length 3 is
small, for examples see [2,3,5 and 6]. The purpose of
this paper is to examine the groups

G(nk)=<a,bl a’=b"=1, ab*ab ' abab *abab=1>,
and the related deficiency zero groups

G(ﬂ)=<a,b'a2=b", a'ba’ba*b%a% 'amb 2alb= 1 >,
where i,j.k,8' m,te (+1}, to show that, among these
groups there are certain infinite subclasses of non-
metabelian finite soluble groups. The presentations of
these groups arise from the investigation of (2,n)-
groups <ab| a’=b"=1, w (a,b)= 1> which were
studied in [4] and [S] in all the cases when w (a,b) =
ab" ab’ ab’ ab"* h,ijk € {£1 , +2).

The Reidemeister-Schreier algorithm in the form
given in [1] will be used to find the presentations of
subgroups. The notation used here are standard and are
consistent with that of [5]. The notation (m,n) will be
used for the highest common factor of the integers m and
n; [a,b] for the commutator a” b ab; and G' denotes the
derived group of the group G.

If G is 2 finite group with presentation G=F/R (F is
a free group of finite rank) then Schur multiplier M (G)
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of G is the subgroup (F'm R) / [F,R] , where [F,R] is
the group generated by all commutators
x! y'1 xy,x e F,y e R.

A group S is a Schur extension of a group G if there
exists a subgroup A < S such that S/A = G and
ASS'"Z (S) (Z(S) is the centre of S).

A covering group C of a group G is a group which
contains a subgroup A which satisfies the conditions
C/A =GandA<SC' N Z(C).

2. The groups G(n,k)

Define: the Lucas numbers

g,=2,g,=1
8a2= 8.t Bou» (122), which are related to the
Fibonacci numbers fy=f,=1,f . =f+f  , (n>2),

via the relation g =f ,+f , . Our result in this

section is:

Theorem 2.1.
(i) For every integer n>1, G(n,1) is a finite soluble
group of order n (1+a) (g,-1- (-1)"), where o=(n,3);

(ii) If (n,3) =1, G(n,1) is soluble of derived length 3,
and is metabelian, otherwise;
(iii) G(n,k) = G (n,1) if (n,k) =1, otherwise G(n,k) is

infinite. We prove this theorem in some stages, and the




Vol3 Nol. 1,2
Winter&Spring 1992
following lemma is of some help in the proof.

Lemma 2.2.
@) I (n,6) =3, then (f_;, -1 + ;)= 2;and for every

n
0203 f,= -1 +f,,5
k=0

-14n/6
(ii) If (n,6)= 6 then, Y, f,, q=(-2+f, 4)/4, and
k=1
-1+n0/6
Y foe= 3+
k=1
(iii) if (n,6)= 3 then,
(n-3)/6 (n-3)/6
Z fn.1.5k=(1/4)fn-4’ and 2 fn-6k= ('l+fn~3) /4;
k=1 k=1
(V) £, £ -fo= (D™, and g = £+, ,(n>1).

Proof. We prove (i). The other identities may be
proved in a similar way. Let n=6m+3. Then, for every
integer k= o we have

(Fpr o1 £rp)= Bz 1HEgmin)
=((‘1) kfk*l +fﬁn-k v(' l)k..“l k+f6m+l -k )'
Let a,= ((‘l)k Fnt Hgmier (D fk+f6m+l-k) and
b= (fg g1 +fgmer)-Then

ag=f ey <ot en+1)
= (1+f6m,-1+f6m+,)

= (14 g - 14 g1 >~ 1+ gt

= EomHomer ~1+t6mer)

= (fgmez 1 Home1 )= b,
Now, leta,=b, we have
A =ED* frp2 Hemar: D £y +Hgma)
=) £, Hempo DM frn Homa)
=" firt Homico ! fr2 Home H-Df fen Homi)
(1) iy +H g D En ) + Eomaci*Tomad)
=(-D* fior Hemio D! £t gnis)
=a,=b.
Note that we have used the properties (x,y)=(y.x) and

(x,y) = (x,y+x). Let k=3m then,
(€, 145 301 s T3 + 3m01) (M 0dd Or even)

=(f 3m+2° f3m.l )
= 3 H3m 10 F3mr)
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(A gy s F3n1) (fOr, (F3ys F3r0.1 =1
=(2f 3.1 )=2 (for, £, is even).

Note that f; is even if and only if i=2 or -1 (mod 6).
The last part of (i) can be proved by induction. 3

First we consider G(n,1) and show that it is finite for
every n. The subgroup H=<b, aba> of G(n,1) has index
2 in G(n,1), for, using coset enumeration and defining
two cosets 1=H and 1a=2 shows that 2b=2 and 1b=1. We
shall adopt the standard practice of using i to denote both
a coset and a representative of that coset throughout the
paper when we use the Reidemeister-Schreier algorithm.
Let x=a and y=aba, thus, from the subgroup generators
we obtain the relations 1'b=x.1 and 2.b=y.2 between
coset representatives. Now, the relationsi.a’=i, 1.b"=i
and i. (ababab?ab™! ab? ab)=i, (i=1,2) yield the only
non-trivial relations x"=y"=l, y'1 ?(2y=xy x? and
x'1y2x=yx'ly2 for the subgroup H. i. e., |G(n,1):H =2
and we have

H=<x,y | x"=y"=1,y" y=xy'x2, xy*x=yx y?>.

Let W=H". W can be generated by{wi: i=1,..., n}
where @ =x'y'x ™! , for the abelianized group H/H'
shows that y"er', | H/H! =n and by defining n cosets
1=<®,, ..., ® ,>=n. We now use the above mentioned
method to get a presentation for W, and we'll get
WX ooy B 0,070,070 F10,0, .. 0,01 G=1,..., 1P,
where indices are reduced modulo n. Now, we have:

Lemma 2.3. For every n21, IW/W'=g -1-(-1)".

Proof. The abelianized relations of W give us that:

W, =W, Wy, wn_,=wfw2, wn_2=wiw§,...

And in general wn_i=w§“' . w;', i=0,1,...,n-3. (This
can be proved by induction on i). Substitute for
w;(i23) in the relations W, W3=W, W3 W, =W, and
thus, we will get

where

W W ...wzw‘=1,

W/W'=<w,, W, Ir,=r,=r,={w, w,l=1>

-1+fa2 W, 1+n3 r2=wf'*'. W-21+fw2 and

n-2 o

Zo f, 1) f;
3=w," = _w, ° . The relation ry=l is
redundant, for, r3=w',m". w;”' (by 2.2-(i))
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Sl 4, 1+ )+ )
=W - W2
=r ry=1 (for,[w,,w,]=1).
So, |W/W'l = detM where
S 2 U £
M= f,, -|+f",2]
Then, | W/W/ =[ 2, £, ,+1-2f, ,f |
= (D" 1+ (F, o+ )
=DMl () = (D™ - leg

(For, f, fo.,-fa=CD™' andg =f +f ., n22).
This completes the proof. O

Lemma 2.4. G(n,1) is finite; and if (n,3)=1 then
|G (n,1)] =2n (g -1<-1)™.

Proof. We showed that | G/H|, | H/W| and | W/W/
are finite, so it is sufficient to show that W' is finite.

Consider the centralsubgroup K=<w’....,w’> of W.
Then, a coset enumeration shows that

1 Af (n,3)=1
| WKl = "
4 Af (n,3)=3.

(We may define four cosets as 1=K,
1w =2, 1w,=3 and 3w ,=4). This proves that Z(W) (the
centre of W) is of finite index in W. The result now
follows from the well-known theorem due to Schur (see
2.2. of [7], for example ).

To complete the proof, let (n,3)=1. Then, | W/K|=1,
i.e.,, W is an abelian group. So, | W|=gn-1-(—1)"
follows from 2.3., and then the result is immediate.Q

Now, let us consider the case (n,3)=3. Simplifying
the presentation of W is substantial, and the following
lemma is a key result for this simplification.

Lemma 2.5. In W, for every k>3, w, can be
expressed in terms of w; and w, as follows:

) w,=w;*.w i if k=3 or 1(mod6)

(ii) w,=w, " . wi if k=+2 or O(mod6)

(ii) W= wh. wi if k=1 (mod6)

Proof. By induction on k and using the Lemma
220

The following two lemmas now give us the order of

W.

Lemma 2.6. Let (n,6)=6. Then, W can be presented as
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W=<w | Wl 1 =1,=1,
(w|w2)‘2(w2w1)'2=1,
’wf,w2]=[w§,wl]=1>
where, r1=w:+f"“. w;'f"'2 and r2=w:’f“. w;"".
Moreover, | Wi =2(g ,-2).
Proof. Observe that the relations
[wiz, Wi |=1,(>3) all are redundant, for, suppose

(1,6)=3 (the proofs are similar in the other cases), then
by the above lemma we conclude that

2 - 'fpz 'f.rs 'f.»z fnJ _f)—2 f.-l
Wi’wi+1_ Wl .W2 .W] 'WZ'WI .W2

>fi% fl-" 2 fi-7 'fn-% '2
=SIwW, T W Wt w,
(this is true because [wf w3]=1 is equivalent to.

2 . . f,
[w2 w,]:l and since f,_, is even then, w,” commutes

with w.)

On the other hand [wg, w 4]:l is equivalent to the
relation (w w2)2= (w,w 1)2. Using this relation and the
fact that f, , and f; , are both odd integers, give us the
validity of the relation

f.-.\ fu 2 _ f\,z 'f.-J 2
[WZ Wl ] —[Wl W2 .

=1 for every i>3.

2
So [Wi’ Wisi
Substitute w andw_, in the two relations

w,w,=w_and w w =w_, to get the required results

n-1

r,=r,=1. Obviously,

WoWa=1, Waw,=w,,..., and w W =w_, yield the
trivial or redundant relations.

To complete the proof we show that
W, W, ..wW,w =l is also redundant. Let

Xog=W W, W oW W W .. Substitute for w; in
terms of w, and w,, then X, becomes
£ 42f, f £, 2f 4

3 2-6 -9 n-2 n-3 a-3

X,=w, " . Wy ,
because, (n,6)=6 then f_, and f_, are even, and other
powers of w, and w, in the experession of X, are odd
numbers, hence the result follows from the relations
2 2 _
[wi, w,l= [w3, w,]=1.

The properties of Fibonacci numbers, now give us
the following identities
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£ 3426 ¢ -Too=4f sand £ ,-2f +f o=4f .,

4, 4,
S0 X, =W, ".w, ", andw_ w_, ...w,w,=l becomes
w‘?_. w]23=1
-24+n/6
where, A=4 Y fn and
k=0
-2+n/6
B=4(1+ Y, foep6) As a result of 2.2.-(ii),

k=0
wf. W2B=1 is equivalent to r,.r,=1, and so is
redundant.

To find the order of W, consider the subgroup
L=<w%, w,> of W where we can easily see that
| W: LI =4 and using the Reidemeister-Schrier algorithm
gives us the following presentation

L=<x,y| [x, yl=L,

X(l+fM 32 y 1-f, +f,, 02 f

=1, x y " =1>.

The order of this abelian group equals (g, -2) /2
which may be found by the matrix method as well as
Lemma 2.3. Then, | W | =2(g_-2).0

Lemma 2.7.Let (n,6)=3. Then W can be presented as
follows:
W=<w,, w2| ry=r,=l, (W w2)2(w2 wl)'2=1, [wf, W,l= [w%, w =l>

f

. f -
where, I =W, wy) W,y W and

w2 fo —
r,=w, ", w," . Moreover | W| =2g_.

Proof. In an almost similar way to that of 2.6,,
using 2.2.- (ii), and considering the subgroup
T=<w’, w,>0f W.which is of index 2 in W in this
case.lJ

Proof of theorem 2.1. (i) comes from 2.3, 2.4,
2.6, and 2.7. To prove (ii) we see that

H =l W =1, if (n,3)=1
|1l =[ wi=2, if (n,3)=3.

(for, | W/W{ =g _-1-(-1)"). On the other hand H' is a
subgroup of G', for, yx'lrab"abeG', so w,e G' for
every i. Since

|G: H]=lG: Hl . |H: Hl =2n=| G: G/,

then, G'=H'. Thus, the result follows immediately.

To prove (iii), if d=(n,k)#1 we add the relation- be=1
to those of G(nk) and get the infinite free product
Z,* Z 4 as a homomorphic image of G(n,k), so, G(n,k)

Doosti
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is infinite. Now, let d=(n,3)=1 and
Reabab ! abZab~! ab2ab, S=ab*ab ™' ab’ab™ab>ab.

R=1 gives that aba=b ' ab?ababab. Raising both sides

to the power k and getting the relation S=1. Conversely,
S=1and b"=1 yicld R=1, because, there exist integers B
and y such that Bn+yk=1,

So, S=1 yields ab™ab 'ab%ab™ab?ab. Hence,
substituting for Yk and considering b"=1, gives the
result R=1. This completes the proof.\]

3. Deficiency zero groups
Consider the
G(n)=<abla’=b", a' ba' b a* b?a*b"'a" b2 a" b=1>
where, ij.k,Lm, g{£1}. Let A=i+j+k+Brm-+t.
Obviously, if A=0 then G(n) is an infinite group (for, it
is a group with positive deficiency). And if A=2 or 4 or
6 we'll get the following three non-isomorphic groups:

G,=<a,bl a’=b",abab™" ab” ab™' ab™? ab=b"">,

G,=<a,bl a’=b"=abab 'ab’ab™" ab*ab>,

G,=<abla’=b", abab™' ab” ab™' ab™? ab=1>
respectively. In this section, Our results concerning the

finite groups involving Lucas numbers, are the
following two theorems.

Theorem 3.1. G, is a finite soluble group.

Proof. The subgroup <a’> of G, is a central
subgroup and a’ belongs to G, (one may consider
G,/G}). Also, G/<a’>= G (n,1). So, G, is a Schur
extension of G(n,1). This means that G, is a

homomorphic image of a covering group of G(n,1).
Since G(n,1) is finite (Section 2), thus, G, is finite.ld

Theorem 3.2. For every n=+1 (mod6), G, is a finite
group of ordéréng .
Proof. Consider the subgroup K=<b, aba™'> of G;.

Define two costs 1=K and la=2 to show that| G;:K| =2.
A similar method as in Section 2 may be used to find a
presentation for K. Thus, we'll get

‘ =<X,Y| xnzyn’ (yx-lyzx-ly-Zx)xh___l,

xy ' %y x Pyx =1,

We show that the relation x™ =1 holds in K. The
second relation of K may be rewritten as

xyx'=x" (y2ixy?)  (for, <x"> is central).

Raising both sides to the power n:
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xy"x "= (v 2"y 2, |
So, x™ =] '(Considering the relation x"=y" ).
Now, we prove that x" has period 3. ‘Suppose, m is
the least positive integer such that x™"=1 holds in K and
consider

K/K' - <X,)’l xn_____yn, yx3n»l=1,x=y-3n+}

. [x,y]=l>
= <x | " =1, x* =1>
which is isomorphic to Z, or Z, ifnis odd, orif nis
even, respectively. Let n = 6gti. If (m,3)=1 we have
K/K' =Z  which is a contradiction, then, (m,3)=3. Let
m=3q, say. Since (m,n) = (3q', 6g+1)=1 and m divides
3n, hence, m divides 3, i.e. m=3. Thus, <x"> has order
3. We add the relation x"=I to those of K and get the
group

<y Ix"=y"=1, yxy 2y Zx=1, xy kA kP y=1s
which is a factor group of K by a central subgroup of

Doosti
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order 3. However, this group considered to have order

2ng, (Section 2), consequently, | G,/ =6ng_ .0
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